Something short and sweet about the article
Achieving carbon neutrality by 2050 is essential for the EU and its transition into a decarbonized economy. Becoming less dependent in external energy supplies will accelerate the reduction of GHG emissions, increase competitiveness for renewable energy markets and secure long-lasting partnerships for Europe’s energy transition. The following guide introduces biomethane and its role in achieving net zero targets.
Biomethane is a gas produced from natural decomposition of organic material found on the earth’s surface. Although it is chemically identical to natural gas (CH4), biomethane is not considered to contribute to global warming when it is combusted, since the CO2 released during combustion was absorbed from the atmosphere when the organic matter grew. In other words, biomethane is considered carbon neutral. Some claim that biomethane is actually carbon negative, since capturing and combusting methane – itself a potent greenhouse gas – can reduce emissions to fight climate change. Determining the full impact of biomethane on climate ecosystems is still an ongoing task given the many factors that need to be considered, such as land use and economic practices. Yet, there is little debate that biomethane is better for the planet than natural gas.
Biomethane would normally be produced through natural processes and would then escape into the atmosphere. However, it is possible to both promote biomethane production during decomposition, as well as capture this gas. Biomethane plants do just this. They gather organic matter (normally called “feedstock”), create optimal conditions for decomposition and collect and purify the gas released. Key to achieving this is the anaerobic reactor, which stops air/oxygen supply, promoting the reaction that produces methane, whilst also extracting the generated biomethane. This can be achieved with a simple bucket and lid, as had been done for cooking in India for decades, or, more commonly practiced in Europe and the US today, via house sized tanks, fed with tones of organic material daily.
A wide range of feedstocks can be used to produce biomethane, including crop residues, animal manure, municipal waste, and sewage sludge. Energy crops, for example maize, can also be specifically grown for biomethane production, although these practices are generally not considered sustainable or socially attractive due to land use change and the possible impacts on food prices.
Inputs and outputs of the biomethane and biogas production process:
https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomethane_en#innovation-and-financing
Authors: Nick Chapman and María Francisca Paz y Miño
Editorial: Lucía Salinas
Adding {{itemName}} to cart
Added {{itemName}} to cart